3.1486 \(\int \frac{1}{x^2 (1-x^8)} \, dx\)

Optimal. Leaf size=102 \[ -\frac{\log \left (x^2-\sqrt{2} x+1\right )}{8 \sqrt{2}}+\frac{\log \left (x^2+\sqrt{2} x+1\right )}{8 \sqrt{2}}-\frac{1}{x}-\frac{1}{4} \tan ^{-1}(x)+\frac{\tan ^{-1}\left (1-\sqrt{2} x\right )}{4 \sqrt{2}}-\frac{\tan ^{-1}\left (\sqrt{2} x+1\right )}{4 \sqrt{2}}+\frac{1}{4} \tanh ^{-1}(x) \]

[Out]

-x^(-1) - ArcTan[x]/4 + ArcTan[1 - Sqrt[2]*x]/(4*Sqrt[2]) - ArcTan[1 + Sqrt[2]*x]/(4*Sqrt[2]) + ArcTanh[x]/4 -
 Log[1 - Sqrt[2]*x + x^2]/(8*Sqrt[2]) + Log[1 + Sqrt[2]*x + x^2]/(8*Sqrt[2])

________________________________________________________________________________________

Rubi [A]  time = 0.0556487, antiderivative size = 102, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 11, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.846, Rules used = {325, 301, 297, 1162, 617, 204, 1165, 628, 298, 203, 206} \[ -\frac{\log \left (x^2-\sqrt{2} x+1\right )}{8 \sqrt{2}}+\frac{\log \left (x^2+\sqrt{2} x+1\right )}{8 \sqrt{2}}-\frac{1}{x}-\frac{1}{4} \tan ^{-1}(x)+\frac{\tan ^{-1}\left (1-\sqrt{2} x\right )}{4 \sqrt{2}}-\frac{\tan ^{-1}\left (\sqrt{2} x+1\right )}{4 \sqrt{2}}+\frac{1}{4} \tanh ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(1 - x^8)),x]

[Out]

-x^(-1) - ArcTan[x]/4 + ArcTan[1 - Sqrt[2]*x]/(4*Sqrt[2]) - ArcTan[1 + Sqrt[2]*x]/(4*Sqrt[2]) + ArcTanh[x]/4 -
 Log[1 - Sqrt[2]*x + x^2]/(8*Sqrt[2]) + Log[1 + Sqrt[2]*x + x^2]/(8*Sqrt[2])

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 301

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(
a/b), 2]]}, Dist[s/(2*b), Int[x^(m - n/2)/(r + s*x^(n/2)), x], x] - Dist[s/(2*b), Int[x^(m - n/2)/(r - s*x^(n/
2)), x], x]] /; FreeQ[{a, b}, x] && IGtQ[n/4, 0] && IGtQ[m, 0] && LeQ[n/2, m] && LtQ[m, n] &&  !GtQ[a/b, 0]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^2 \left (1-x^8\right )} \, dx &=-\frac{1}{x}+\int \frac{x^6}{1-x^8} \, dx\\ &=-\frac{1}{x}+\frac{1}{2} \int \frac{x^2}{1-x^4} \, dx-\frac{1}{2} \int \frac{x^2}{1+x^4} \, dx\\ &=-\frac{1}{x}+\frac{1}{4} \int \frac{1}{1-x^2} \, dx-\frac{1}{4} \int \frac{1}{1+x^2} \, dx+\frac{1}{4} \int \frac{1-x^2}{1+x^4} \, dx-\frac{1}{4} \int \frac{1+x^2}{1+x^4} \, dx\\ &=-\frac{1}{x}-\frac{1}{4} \tan ^{-1}(x)+\frac{1}{4} \tanh ^{-1}(x)-\frac{1}{8} \int \frac{1}{1-\sqrt{2} x+x^2} \, dx-\frac{1}{8} \int \frac{1}{1+\sqrt{2} x+x^2} \, dx-\frac{\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx}{8 \sqrt{2}}-\frac{\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx}{8 \sqrt{2}}\\ &=-\frac{1}{x}-\frac{1}{4} \tan ^{-1}(x)+\frac{1}{4} \tanh ^{-1}(x)-\frac{\log \left (1-\sqrt{2} x+x^2\right )}{8 \sqrt{2}}+\frac{\log \left (1+\sqrt{2} x+x^2\right )}{8 \sqrt{2}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} x\right )}{4 \sqrt{2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} x\right )}{4 \sqrt{2}}\\ &=-\frac{1}{x}-\frac{1}{4} \tan ^{-1}(x)+\frac{\tan ^{-1}\left (1-\sqrt{2} x\right )}{4 \sqrt{2}}-\frac{\tan ^{-1}\left (1+\sqrt{2} x\right )}{4 \sqrt{2}}+\frac{1}{4} \tanh ^{-1}(x)-\frac{\log \left (1-\sqrt{2} x+x^2\right )}{8 \sqrt{2}}+\frac{\log \left (1+\sqrt{2} x+x^2\right )}{8 \sqrt{2}}\\ \end{align*}

Mathematica [A]  time = 0.0325884, size = 109, normalized size = 1.07 \[ -\frac{\sqrt{2} x \log \left (x^2-\sqrt{2} x+1\right )-\sqrt{2} x \log \left (x^2+\sqrt{2} x+1\right )+2 x \log (1-x)-2 x \log (x+1)+4 x \tan ^{-1}(x)-2 \sqrt{2} x \tan ^{-1}\left (1-\sqrt{2} x\right )+2 \sqrt{2} x \tan ^{-1}\left (\sqrt{2} x+1\right )+16}{16 x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(1 - x^8)),x]

[Out]

-(16 + 4*x*ArcTan[x] - 2*Sqrt[2]*x*ArcTan[1 - Sqrt[2]*x] + 2*Sqrt[2]*x*ArcTan[1 + Sqrt[2]*x] + 2*x*Log[1 - x]
- 2*x*Log[1 + x] + Sqrt[2]*x*Log[1 - Sqrt[2]*x + x^2] - Sqrt[2]*x*Log[1 + Sqrt[2]*x + x^2])/(16*x)

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 79, normalized size = 0.8 \begin{align*} -{\frac{\arctan \left ( x \right ) }{4}}+{\frac{\ln \left ( 1+x \right ) }{8}}-{\frac{\ln \left ( -1+x \right ) }{8}}-{\frac{\arctan \left ( -1+x\sqrt{2} \right ) \sqrt{2}}{8}}-{\frac{\sqrt{2}}{16}\ln \left ({\frac{1+{x}^{2}-x\sqrt{2}}{1+{x}^{2}+x\sqrt{2}}} \right ) }-{\frac{\arctan \left ( 1+x\sqrt{2} \right ) \sqrt{2}}{8}}-{x}^{-1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(-x^8+1),x)

[Out]

-1/4*arctan(x)+1/8*ln(1+x)-1/8*ln(-1+x)-1/8*arctan(-1+x*2^(1/2))*2^(1/2)-1/16*2^(1/2)*ln((1+x^2-x*2^(1/2))/(1+
x^2+x*2^(1/2)))-1/8*arctan(1+x*2^(1/2))*2^(1/2)-1/x

________________________________________________________________________________________

Maxima [A]  time = 1.46255, size = 126, normalized size = 1.24 \begin{align*} -\frac{1}{8} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x + \sqrt{2}\right )}\right ) - \frac{1}{8} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x - \sqrt{2}\right )}\right ) + \frac{1}{16} \, \sqrt{2} \log \left (x^{2} + \sqrt{2} x + 1\right ) - \frac{1}{16} \, \sqrt{2} \log \left (x^{2} - \sqrt{2} x + 1\right ) - \frac{1}{x} - \frac{1}{4} \, \arctan \left (x\right ) + \frac{1}{8} \, \log \left (x + 1\right ) - \frac{1}{8} \, \log \left (x - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-x^8+1),x, algorithm="maxima")

[Out]

-1/8*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) - 1/8*sqrt(2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2))) + 1/16*sqrt
(2)*log(x^2 + sqrt(2)*x + 1) - 1/16*sqrt(2)*log(x^2 - sqrt(2)*x + 1) - 1/x - 1/4*arctan(x) + 1/8*log(x + 1) -
1/8*log(x - 1)

________________________________________________________________________________________

Fricas [A]  time = 1.38342, size = 382, normalized size = 3.75 \begin{align*} \frac{4 \, \sqrt{2} x \arctan \left (-\sqrt{2} x + \sqrt{2} \sqrt{x^{2} + \sqrt{2} x + 1} - 1\right ) + 4 \, \sqrt{2} x \arctan \left (-\sqrt{2} x + \sqrt{2} \sqrt{x^{2} - \sqrt{2} x + 1} + 1\right ) + \sqrt{2} x \log \left (x^{2} + \sqrt{2} x + 1\right ) - \sqrt{2} x \log \left (x^{2} - \sqrt{2} x + 1\right ) - 4 \, x \arctan \left (x\right ) + 2 \, x \log \left (x + 1\right ) - 2 \, x \log \left (x - 1\right ) - 16}{16 \, x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-x^8+1),x, algorithm="fricas")

[Out]

1/16*(4*sqrt(2)*x*arctan(-sqrt(2)*x + sqrt(2)*sqrt(x^2 + sqrt(2)*x + 1) - 1) + 4*sqrt(2)*x*arctan(-sqrt(2)*x +
 sqrt(2)*sqrt(x^2 - sqrt(2)*x + 1) + 1) + sqrt(2)*x*log(x^2 + sqrt(2)*x + 1) - sqrt(2)*x*log(x^2 - sqrt(2)*x +
 1) - 4*x*arctan(x) + 2*x*log(x + 1) - 2*x*log(x - 1) - 16)/x

________________________________________________________________________________________

Sympy [C]  time = 106.584, size = 49, normalized size = 0.48 \begin{align*} - \frac{\log{\left (x - 1 \right )}}{8} + \frac{\log{\left (x + 1 \right )}}{8} + \frac{i \log{\left (x - i \right )}}{8} - \frac{i \log{\left (x + i \right )}}{8} - \operatorname{RootSum}{\left (4096 t^{4} + 1, \left ( t \mapsto t \log{\left (- 2097152 t^{7} + x \right )} \right )\right )} - \frac{1}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(-x**8+1),x)

[Out]

-log(x - 1)/8 + log(x + 1)/8 + I*log(x - I)/8 - I*log(x + I)/8 - RootSum(4096*_t**4 + 1, Lambda(_t, _t*log(-20
97152*_t**7 + x))) - 1/x

________________________________________________________________________________________

Giac [A]  time = 1.15946, size = 128, normalized size = 1.25 \begin{align*} -\frac{1}{8} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x + \sqrt{2}\right )}\right ) - \frac{1}{8} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x - \sqrt{2}\right )}\right ) + \frac{1}{16} \, \sqrt{2} \log \left (x^{2} + \sqrt{2} x + 1\right ) - \frac{1}{16} \, \sqrt{2} \log \left (x^{2} - \sqrt{2} x + 1\right ) - \frac{1}{x} - \frac{1}{4} \, \arctan \left (x\right ) + \frac{1}{8} \, \log \left ({\left | x + 1 \right |}\right ) - \frac{1}{8} \, \log \left ({\left | x - 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-x^8+1),x, algorithm="giac")

[Out]

-1/8*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) - 1/8*sqrt(2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2))) + 1/16*sqrt
(2)*log(x^2 + sqrt(2)*x + 1) - 1/16*sqrt(2)*log(x^2 - sqrt(2)*x + 1) - 1/x - 1/4*arctan(x) + 1/8*log(abs(x + 1
)) - 1/8*log(abs(x - 1))